A Proper Extension of Noether’s Symmetry Theorem for Nonsmooth Extremals of the Calculus of Variations

نویسنده

  • Delfim F. M. Torres
چکیده

For nonsmooth Euler-Lagrange extremals, Noether’s conservation laws cease to be valid. We show that Emmy Noether’s theorem of the calculus of variations is still valid in the wider class of Lipschitz functions, as long as one restrict the Euler-Lagrange extremals to those which satisfy the DuBois-Reymond necessary condition. In the smooth case all EulerLagrange extremals are DuBois-Reymond extremals, and the result gives a proper extension of the classical Noether’s theorem. This is in contrast with the recent developments of Noether’s symmetry theorems to the optimal control setting, which give rise to non-proper extensions when specified for the problems of the calculus of variations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noether’s Symmetry Theorem for Variational and Optimal Control Problems with Time Delay

We extend the DuBois–Reymond necessary optimality condition and Noether’s symmetry theorem to the time delay variational setting. Both Lagrangian and Hamiltonian versions of Noether’s theorem are proved, covering problems of the calculus of variations and optimal control with delays.

متن کامل

Non-conservative Noether’s theorem for fractional action-like variational problems with intrinsic and observer times

We extend Noether’s symmetry theorem to fractional action-like variational problems with higher-order derivatives.

متن کامل

Constants of motion for fractional action-like variational problems

We extend Noether’s symmetry theorem to the fractional RiemannLiouville integral functionals of the calculus of variations recently introduced by El-Nabulsi. AMS Subject Classification: 49K05, 49S05, 70H33.

متن کامل

Noether ’ s Theorem on Time Scales ?

We show that for any variational symmetry of the problem of the calculus of variations on time scales there exists a conserved quantity along the respective EulerLagrange extremals.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008